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Abstract

Scientific and engineering applications in the DOD require high performance to meet
operational and research objectives, while the dynamic and diverse HPC environments in
the Major Shared Resource Centers require that applications also be portable.  The
challenge in programming for either performance or portability is significant, and these
difficulties increase as demands for the degree to which either goal is met become more
stringent.  Meeting both goals simultaneously is even more difficult because techniques
for achieving them individually conflict with achieving both simultaneously.  Current
software development techniques may not be adequate in many instances and, in practice,
users demanding the highest performance end up rewriting their applications or each
platform.  This has lead many researchers to the conclusion that different program
variants are required in different computational situations to achieve both high
performance and portability.

Adaptive algorithms, sometimes referred to as polyalgorithms, are constructed such that
they encapsulate a variety of methods to solve a single problem.  The specific method
applied to a given problem is determined at run time based upon the characteristics of the
problem being solved, the machine being used, and so on.  The software mechanism
responsible for making this determination is called a switching function.  This paper
examines several alternative formulations for switching functions based on empirical
performance modeling.  The performance of each formulation is assessed in terms of
accuracy and cost tradeoffs, as well as in terms of the performance insight provided by
the functions themselves.  Lessons derived from these analyses are then applied to the
creation of a working adaptive algorithm for parallel computation.

Introduction

This research is focused on technologies that enable development of programs with
characteristics that Alpern has termed the three P’s: portability, high performance, and
parallelism (Alpern and Carter 1994).  More specifically, it is focused on enabling high
performance, portable scientific and engineering applications for use in modern
heterogeneous high performance computing (HPC) environments.  These applications
typically employ mathematically complex models and produce large amounts of data.
High performance computers have long been employed by scientists and engineers to
meet the computational challenge of producing accurate results from complex models
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within operational time constraints.  In recent years, however, the computational
resources in large computing environments are increasingly divided over several
computers, rather than being centrally located on one monolithic HPC machine.  In order
to assemble sufficient resources to meet the objectives of a computation it may be
necessary to utilize more than one system.  This requires that different versions of the
application be developed and maintained for each system used, or that a single version
supporting each system be developed.  In environments where only a single computer is
used, the specifics of hardware and software configuration in high performance
environments are often dynamic, and a single machine may undergo several incremental
modifications throughout its installation.  These modifications may alter the performance
profile of the system, requiring application modifications to restore performance to
expected levels.  Resource decentralization and dynamic system configuration contribute
to the need for application portability.  Portability preserves existing code development
investments, and enables research staff to focus on their research rather than the nuances
of facilitating the computations themselves.

The importance of achieving high performance, portability, or both to the research
community is indicated by the development of a tremendous array of software, software
libraries, and standards over the years.  The construction of software solutions to these
problems has been complicated by the fact that programming for high performance
usually requires adding machine-specific program constructs into an application, an
approach that is simultaneously at odds with creating portable programs.  The source
code portability of applications between machines has been well served by efforts to
standardize implementation languages.  One may reasonably expect an application
written in ANSI C to compile on all platforms of interest.  However, the machine-specific
constructs for high performance are dependent upon the particular features of a machine’s
hardware.  This naturally hinders portability, and so portability of the implementation
language, while useful, is clearly not sufficient for our goals.

One of the most common software design mechanisms employed for achieving high
performance and portability is abstraction.  This is usually accomplished via standardized
interfaces to machine-dependent implementations.  Numerical libraries starting with the
BLAS (Lawson, et al. 1979)(Dongarra, et al. 1990)(Dongarra, et al. 1988) and proceeding
through LINPACK, LAPACK (Anderson, et al. 1995), ScaLAPACK (Dongarra, van de
Geijn, and Walker 1992), ScaLAPACK++ (Dongarra, Pozo, and Walker 1993), the
Multicomputer Toolbox (Skjellum 1993), PETSc (Balay, Gropp, and Curfman 1998),
PLAPACK (Alpatov, et al. 1997)(van de Geijn 1997), and many others, embody this
approach.  Utility libraries have also been constructed using the same principles,
providing portability and performance across a multitude of platform-specific functions
for similar functionality.  Examples of this include message passing libraries on
distributed memory parallel computers, such as MPI (Message Passing Interface Forum
1994) and PVM (Geist, et al. 1994).  Standardization efforts such as OpenMP (Dagum
and Menon 1998) have similar goals for shared memory parallel computers.

Limitations of Current Solutions

Each of these tools deliver a common set of functions over different computing platforms
by using a standard Application Program Interface (API) that masks the vendor- and
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hardware-specific code necessary to achieve programmability with high performance,
portability, or both.  As such, they accomplish a portion of the tasks necessary to create
portable parallel programs that also achieve high performance.  These libraries typically
support a single implementation for each functionality provided (such as matrix
multiplication, LU decomposition, and so on).  As demands on applications change and
computation environments evolve over time, the performance of applications built using
these libraries is likely to change, possibly for the worse.  This is because traditional
library design has focused upon selecting the single algorithm that performs best over the
entire range of expected problems.  In the traditional approach, the algorithm that best
handles the problems expected to occur most often is implemented.  Let us call the set of
possible problems expected to occur most often the design range for an application.
Performance may degrade when an algorithm selected for a specific design range is
applied to problems outside that range.  For some applications it may not be possible to
define a design range that is sufficiently small to be adequately covered by a single
algorithm.  In cases where the designer can define an acceptable design range and select a
suitable algorithm, this choice may not remain valid over time.  The characteristics of
input problems may evolve out of the design range as requirements continuously evolve
(changing the nature of problems solved), hardware or system software is upgraded, or
the application is ported to new architectures.  Input characteristics may also evolve into
a subset of the original design range, eliminating inputs at the extrema of the original
range.  This too may result in performance degradation if a different algorithm would
perform more effectively on problems in the reduced design range.

Scientific and engineering applications often require high performance to meet simulation
objectives, and a dynamic and diverse HPC environment requires that applications also
be portable.  Designing applications that achieve high performance on multiple machines
is a significant challenge.  Standardized implementation languages that facilitate
portability are insufficient in view of the hardware-specific constructs that must be
included in application code to achieve high performance.  Furthermore, high level
libraries that enable application designers to express functionality via a common interface
while hiding hardware-optimized implementations from the designer are also insufficient.
These libraries typically implement a single algorithm that may or may not perform
within expectations on problems encountered by an application during production.  A
more flexible approach to application development is needed.

Adaptive Algorithms

Creating programs that are portable and achieve high performance is difficult, and as
discussed above current approaches to addressing the challenges are inadequate in many
instances.  This has lead many researchers to the conclusion that different program
variants are required in different computational situations to achieve high performance.
Alpern and Carter (Alpern and Carter 1994) propose the need for different program
variants in motivating the need for a generic model of computation.  Other researchers
propose that algorithms be written to include a variety of methods for solving a single
problem, with a mechanism provided to select between the competitors at run time
(Brewer 1995)(Demmel 1992)(Dongarra and Walker 1995)(Gunnels, et al. 1998)(Li,
Skjellum, and Falgout 1997)(Rice 1968)(Sussman 1992)(van de Geijn and Watts 1997).
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These approaches may be viewed as parts of a growing opinion that that adaptive
algorithms have potential for creating algorithms that achieve portability and high
performance on parallel computers.

Adaptive algorithms, sometimes referred to as polyalgorithms (Rice 1968) or poly-
algorithms, encapsulate a variety of methods to solve a single problem.  The specific
method applied to a given problem is determined at run time based upon the parameters
that influence performance: machine issues, application software issues, and instance
issues.  Adaptive algorithms can be thought of as containers for several related methods
of solving a single problem along with a mechanism for selecting the best1 algorithm for
each problem.  If enough algorithms are included in the algorithm set, chances are that at
least one of them will perform well for a given problem on a given machine.  As noted by
Brewer (Brewer 1995) this approach simplifies code reuse and provides a framework for
incorporating new algorithms.  This approach also provides a basis for directing new
algorithm research, and provides a mechanism for evaluating the effectiveness of those
algorithms.

Current Approaches to Adaptive Algorithms

There is limited previous work directly examining the creation of switching functions for
adaptive algorithms.  However, a few numerical software packages are available that
implement adaptive algorithms.  The primary examples of these are PLAPACK (van de
Geijn 1997), the Finite Difference Solver (FIDISOL), the Cartesian Arbitrary Domain
Solver (CADSOL), and the Linear Solver (LINSOL).  PLAPACK includes an adaptive
algorithm for selecting among competing parallel matrix multiplication algorithms.  The
switching functions used are simple, comprised of only four rules that are each sensitive
only to ratios of the matrix dimensions.  These switching functions appear to be based on
heuristics.  Early results indicate a relatively low accuracy in predicting the most
desirable algorithm (about 80% correct predictions in early tests2).  This indicates that a
more sophisticated approach may be needed.

An example of the approach typically taken in the other packages is found in LINSOL,
which uses an adaptive algorithm for the iterative solution of linear systems by Krylov
methods (Weiss, Haefner, and Schoenauer 1995).  The adaptive algorithm uses three
algorithms, each with different numerical characteristics.  The first algorithm is very fast
for diagonally dominant matrices, but may be unstable otherwise.  The second algorithm
converges more slowly, but the convergence criteria are somewhat relaxed.  The final
algorithm always converges very slowly, but is most likely to converge.  The same
approach is used in VECFEM3 for a subset of supported Krylov subspace solvers.  Note
that in these libraries the only criterion used in the switching function is convergence.

                                                
1 Use of the word “best” in this context means “best among the available alternatives.”
rather than “best among the universe of possible alternatives.”
2 These tests were performed by the author in a set of preliminary investigations designed
to precede the research and provide focus for future efforts.
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There are many potential adaptation options for the Krylov methods, particularly with
respect to communication patterns and data storage requirements, which are not included.

These packages are focused on delivering high performance by modifying computation
patterns.  There are other aspects on which algorithms may adapt, for example storage
and communication patterns.  SparsLinC supports adaptive algorithms for data storage.
Sparse vector accumulation is implemented using an approach that transparently switches
between three different representations of sparse vectors.  Some implementations of MPI
and the Bulk Synchronous Parallel library (Hill, et al. 1997) provide adaptive
communication algorithms for global communication that are sensitive to the number of
processors involved.

Also relevant are the ATLAS (Whaley and Dongarra 1998) and PHiPAC (Bilmes and
others 1997) projects.  Both projects seek to produce optimal code for computation
kernels through code generation.  Specifically, each seeks to optimize matrix
multiplication on uniprocessors with multi-level memory hierarchy, although the research
can easily be applied to other linear algebraic operations on the same types of machines.
Both systems perform a suite of benchmarks upon installation to determine how the
hardware features, such as cache size, etc., of the machine being evaluated impact
algorithm performance.  These projects are conceptually similar to the proposed research.
However both ATLAS and PHiPAC focus on problems with a single adaptation
dimension, matrix size, and are limited to uniprocessor problems.  In addition, a single
cost function, user execution time, is available for minimization.  Perhaps most
significant, however, is that both projects select the optimal algorithm at compile time.

The largest drawback for compile time approaches is that they are targeted for
applications in which the performance-affecting features of a specific problem are known
at compilation time.  Thus the application must be recompiled whenever the
characteristics of the machine or the problem change.  This can be problematic if highly
dynamic characteristics, such as the number and configuration of processors used on a
problem, affects performance.

The most extensive treatment of adaptive algorithms for achieving high performance with
portable sensitivity to machine and instance issues is given by Brewer (Brewer 1995).
This work, which is based on research by Sussman (Sussman 1992), is the basis of the
current research.  The switching functions employed by Brewer are based upon models
that are statistically generated from a database of empirical performance data.  Brewer’s
linear regression approach is highly accurate (over 99% in published examples (Brewer
1995)), but is expensive to create, as the performance data upon which the regression is
performed is gathered through an extensive benchmarking process.  This process is
equivalent to solving an optimization problem by exhaustive search of the parameter
space.  The cost of populating the instance space for this type of problem rapidly
becomes large as the number of parameters increases, or when any one dimension is
particularly large.  Brewer reports running several tens of thousands of benchmarks in
order to produce a single switching function.  A central theme of the current research will
be to examine alternatives to the straightforward linear regression approach and the
accuracy/cost tradeoffs inherent in these alternative solutions.
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Current Research

The current research examines adaptive algorithms as a mechanism for creating
numerical software that achieves both high performance and portability.  The research
program is long term and is ongoing.  The two aspects of adaptive algorithms proposed
for study in this research are switching functions and cost models.  Switching functions
are the software mechanism by which the adaptive algorithm selects the best available
implementation for the current computational system3, a process also referred to as
variant selection (where variant is short for algorithm variant).  Work by previous
researchers discussed above has concentrated on a single switching function technology
with a high associated cost.  A central theme of this research is to examine alternatives to
this approach and the accuracy/cost tradeoffs inherent in those alternatives.  The
complete program of research, described elsewhere, includes study of switching functions
developed from analytical performance models and geometric methods based on adaptive
benchmarking.  The results discussed in this paper focus on the development of switching
functions based on the results of traditional data mining methods.

The data mining methods as a class are essentially techniques for automatically
determining how observed characteristics of a problem are related to a given outcome.
As such, they rely on the training data to contain accurate information about transitions
between possible outcomes.  The methods are particularly useful for problems that have
large numbers of features whose relationship to outcome is not clearly understood.  In
this research these methods will be applied to performance measurements of algorithm
variants in an effort to identify expressions for predicting which variant is best for a
particular problem.  Note that the key to the effectiveness of these methods is that they
are often robust in the face of data not available when they were originally trained.  We
hope to show that this feature extends into the performance domain so that accurate
predictions may be made for all problems in a given range from relatively few
measurements.  This is important because the type of extensive benchmarking performed
in previous work (Brewer 1995) is expensive and often impractical in supercomputing
environments.

Switching Functions and Data Mining

There are two general ways to formulate a problem for solution by data mining
techniques.  Problems may be formulated as either classification or regression problems.
In data mining the characteristics of a particular problem are called features or input
features.  For classification problems the input features are used to predict which of the
possible output states is the most likely outcome.  For this type of problem there is more
than one possible outcome; each outcome corresponds to a class.  The inputs may be
continuous or discrete features.  The outputs are discrete – the predicted outcome is a
given class (one), or it is not that class (zero).  As an example, consider the classic loan
assessment problem from financial management.  The problem is to predict, given a set

                                                
3 A computational system is the combination of hardware (a platform), system software,
and the specific problem being solved.
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of features, whether a potential customer will default on or repay a loan.  The feature set
could be any relevant data: current debt, whether the customer has defaulted in the past,
present income, whether the customer owns a home, and so on.  There is a single output
which takes the value one (loan granted) or zero (loan denied).

The other way to formulate a problem is as a regression, or continuous output, problem4.
A regression problem is one in which the input features predict the value of a single
continuous output variable.  Both inputs and outputs may be continuous; the inputs may
also be discrete.  For example, reconsider the loan assessment problem.  This problem
may be reformulated as a regression problem if, given the same input features, we desire
a real-valued estimate of the default risk.  The methods can then be trained to produce a
quantitative indicator of risk expressed as a number between zero (no risk) and one
(certain default).

The loan assessment problem may be posed as either a classification or a regression
problem.  Many problems lend themselves to both formulations.  The switching

function problem in the proposed research may be posed either way.  The regression
formulation would take the input features and provide a real-valued estimate of the
performance for each of the available variants.  An extra layer of logic would then
be added to select the algorithm with the highest predicted performance from the
variant set, and apply this algorithm to the problem.  For this approach a separate

model would be constructed from training data for each of the variants.  The
classification formulation would take the same set of inputs (possibly), but rather

than producing a single continuous output it would provide m discrete outputs, one
for each algorithm variant.  The output value for each algorithm would be zero
except for the algorithm that is predicted to be most desirable for the current

problem.  Figure 1 and

Figure 2 conceptually illustrate the differences between these two approaches.

The application of data mining methods to benchmark data represents a departure from
both the traditional applications of data mining methods and the accepted computational
engineering approaches.  The novelty of the application suggests that it is wise to expend
a small amount of initial effort in a pilot exploration to establish the feasibility of the full
course of research.  This paper summarizes the results of part of that pilot study.

Computational Infrastructure

The switching functions explored in this research are targeted for selecting among
variants for numerical computation on parallel distributed memory HPC platforms.
PLAPACK (van de Geijn 1997) has been selected as the software infrastructure for this
research for several reasons.  First, it supports manipulation of high level mathematical
objects while maintaining performance at least equivalent to ScaLAPACK.  Second, the

                                                
4 Problems in this category are referred to as regression problems, although this
terminology is not meant to imply that the standard linear regression methods from
statistics are applied in every instance.
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Physically Based Matrix Distribution (PBMD) approach to data distribution is intriguing,
and appears to have certain advantages for minimizing the complexity of parallel
algorithms.  Finally, PLAPACK supports a rudimentary matrix multiplication adaptive
algorithm to which the results of the current research can be compared.

Adaptive Matrix Multiplication in PLAPACK

It would be advantageous to reuse the matrix multiplication code in PLAPACK as the
foundation for the matrix multiplication portion of the proposed research.  Since the
emphasis is on mechanisms for selecting among algorithm variants, it is not necessary to
have a fully functional adaptive algorithm that addresses the complete range of potential
problems from an application domain.  Rather, all that is necessary is to assemble some
reasonable collection of multiplication algorithms that is sufficient to test the switching
technologies being investigated.

The matrix multiplication variants in PLAPACK are developed by studying the many
ways to express matrix multiplication using the BLAS.  The most common method is to
simply call the gemm family of routines.  However, on many architectures the
performance of this routine is highly influenced by the shape of the matrices being
multiplied.  Let us consider the multiplication C=AB, where C is m by n, A is m by k, and
B is k by n.  As the sizes of the three dimensions vary, the shapes of the matrices being
multiplied varies.  For example, if dimension k becomes small then A becomes a column
vector and B a row vector.  The most desirable BLAS routine for multiplying these
vectors is the ger family.  Letting each of the dimensions shrink to one and creating the
corresponding eight matrix shapes one can create a complete table of shapes and the most
desirable BLAS operation for the multiplication of those shapes.  This is the approach
taken by PLAPACK in its shape-adaptive matrix multiplication algorithm.  A complete
description of the different operand shapes and the determination of appropriate BLAS
routines are given in (Gunnels, et al. 1998).  The key to choosing which variant to use for
a specific problem lies in quantifying the adjectives “small” and “large.”  This is the job
of the switching functions.

The code segment below shows the PLAPACK switching functions for parallel matrix
multiplication.  In this code segment m, n, and k are the matrix dimensions; nb is the
blocking factor; and nprocrows is the number of rows in the virtual processor
topology5.

If [ (10*m<k) and (10*n<k) and
      m < (nb*nprocrows/2))and
      n < (nb*nprocrows/2))    ]

then variant 4

else if [ (5*n<k and 5*n<m)or
          (5*m<k and 5*n<k)    ]

                                                
5 The processors are arranged into a nprocrows X nproccols grid.
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then variant 2

else if [5*m<k and 5*k<n]

then variant 3

else variant 1

Note that this switching function only includes four of the possible eight matrix
multiplication variants created by varying the index sizes as discussed in the preceding
section.  These four correspond to matrix dimensions shown in Table 1.  The PLAPACK
library is distributed with six implementations; the remaining two (m, n, k small and m, n
large, k small) are not included.  Independent experiments on a wide range of matrix
sizes indicates that the two implementations not included in the switching function are
never most desirable on the measured architectures, despite theoretical indications to the
contrary.  This is a result of the mechanics of actual hardware implementations and data
movement through the memory hierarchy.  Measurements have shown that algorithm
four is only the most desirable variant when m, n, and k are each very small.  In the
benchmarks for this study algorithm four never wins.

Measurements

In order to derive a qualitative understanding of how the proposed techniques may fare in
a complete application, a comparative study has been designed.  This study applies each
of the proposed techniques for generating switching functions to sets of algorithm
performance data in order to evaluate how switching functions generated with each of the
methods perform.  These sets of data are called training sets.  The switching functions are
then used to make predictions of the most desirable algorithm for a set of new problems.
These problems were completely hidden from all methods during the development of the
switching functions.  Data used for evaluating the switching functions are called test sets.

The switching functions built in this preliminary study are for parallel matrix
multiplication on an IBM SP.  The configuration of the SP used for the data mining study
is shown in Table 2 and Table 3.  PLAPACK version 1.2 is used for this study.
PLAPACK requires LAPACK for some of its operations.  LAPACK is not installed on
this machine; LAPACK functionality was provided by building the kernels that
accompany the PLAPACK distribution.  PLAPACK also requires the BLAS for all local
computations; the vendor-optimized BLAS library was used.  The matrices multiplied are
m by k and k by n, producing and m by n product matrix.  Each dimension is allowed to
vary in a triple-loop.  Performance in MFLOPS is measured for each algorithm variant at
each problem size.  The reported performance for each variant is the average of three
executions per problem on a production machine.  In order to ensure that the data are not
biased by cache effects the cache is flushed between each individual measurement.  For
this study the four matrix multiplication variants supplied with PLAPACK as discussed
above are used.

Initially the switching function problem will be expressed as a classification problem.
Intuitively this is the “right” way to express this problem.  Practically, however, an
objective evaluation of both the continuous and discrete formulations will need to be
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made before a final decision is made.  The methods may select among four algorithm
variants, and thus there are four output classes.  There are six input features.  The matrix
dimensions m, n, and k are considered, as are the ratios of these dimensions (m/n, m/k,
n/k).  The ratios were included to provide the opportunity for the data mining methods to
re-create the PLAPACK switching functions.  This might happen if, for example, the
PLAPACK switching functions did turn out to be a good model for the phenomena in the
parameter space.  Note that this is a small subset of the factors the influence the
performance of parallel matrix multiplication algorithms.  The number of processors,
shape of the process topology, distribution and algorithm blocking factors, and others are
being considered in ongoing research.  These results are not discussed in this paper.

One training set and two test sets were generated for this evaluation.

Table 4 lists the exact dimensions used in generating each set of performance data.  In
order to create the training sets the performance of each variant on each problem has to
be measured.  These measurements were taken on four processors with a square
processor topology (2x2).  Benchmarks for the test sets are also performed in order to
check the accuracy of the switching function predictions.  In order to assess how well a
switching function trained with data generated on one processor configuration (2x2)
performs in predictions for different processor configurations the test data were also
benchmarked on 3x3 and 4x4 processors.

The prevalence of each class for each data on the various processor configurations is
shown in Table 6 through Table 13.  The remaining characteristics are described below:

• Training Set 1
There are thirteen possible index values.  Letting each index assume each
value results in 2,197 separate problems.  Each variant is measured for each
problem; for four variants, this creates 8,788 separate measurements

• Test Set 1
There are nine possible index values.  These values were selected by choosing
sample points between samples in Test Set 1 and perturbing the indices by a
random number between –10 and 10.  Each of the indices in this test set is
contained with the bounds of the training sets.  Therefore, this set is also
called the Inside Test Set.  Note that none of these index values appears in
either of the training sets, so this is a clean test set – each problem size is
completely new.  Letting each index assume each value results in 729 separate
problems.  Each variant is measured for each problem; for four variants, this
creates 2916 separate measurements.

• Test Set 2
There are five possible index values.  These values were selected by choosing
sample points outside the samples in Training Set 1.  Where the Inside Test
Set measures performance of the switching functions on problems that are
within the range of the original training data, Test Set 2 will measure the
ability of the switching functions to extrapolate to new problems.  This set is
also called the Outside Test Set, and is a clean test set.  Letting each index
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assume each value results in 125 separate problems, and there are 500
separate measurements.

For measurements taken on the 3x3 and 4x4 processor configurations the size of each
problem remains constant on a per processor basis.  The amount of work performed by
each processor is held constant by scaling each value of m, n, and k by the square root of
the number of processors.  During training of the methods, however, the data sets express
results in terms of the base value of m, n, and k for each processor configuration.  Thus,
if a 50 by 50 problem is run on 2x2 processors, the benchmark is executed as a 200x200
element problem, but results are recorded in the training and test sets as the original
50x50 size.  One may think of the methods being trained to respond to the amount of
work per processor, not just the global problem size.  This is done so that direct
comparisons can be made between the results of data mining methods applied on
different processor configurations.

Data Mining Methods

In this pilot study, we will investigate the performance of switching functions generated
from relationships identified by logic, math, and distance data mining methods.
Specifically decision trees, linear discriminant analysis (LDA), and k-Nearest Neighbors
(k-NN) methods will be evaluated.  The complete program of research includes other
methods as well.  Accompanying the data mining methods are pre-processing methods
for the data themselves.  These methods can enhance predictive performance or reduce
training time by changing the training data set in a variety of ways.  We will apply feature
and case reduction methods.  Most of the methods employed in this study have
parameters that can be tuned for optimal performance.  In this preliminary study, these
parameters are fixed.  Thus, although the results of this study are not necessary optimal,
they will allow the relative effectiveness of the different methods to be determined.

Only a rudimentary discussion of the data mining and pre-processing methods will be
provided – the reader seeking information that is more detailed will find an excellent
overview in (Weiss and Indurkhya 1998).

Pre-Processing Methods

Pre-processing methods generally fall into three categories: feature, value, and case
reduction methods.  Feature reduction methods apply transformations to the data to
eliminate one or more input features from the training set.  For example, the statistical
significance of each feature relative to the output classes may be computed.  Features not
determined to be significantly different across the classes are not useful for prediction,
and may therefore be eliminated.  Feature reduction is most often useful for math and
distance methods because the do not have this capability built in.  This study will employ
tree reduction over the feature set for determining which features may be eliminated.  In
this approach a decision tree solution is induced from the training set exactly as would be
done if the tree method was applied to the training data to produce a predictive solution.
However, for feature reduction we are not concerned with the structure of the tree or its
relationships, but only whether a feature appears at all in the decision-making process.
Features that do not appear in the tree are eliminated from the training set.
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Value reduction methods are usually applied to data sets that have input features that take
on many (thousands) of values.  These methods reduce the total number of unique values
by clustering or assigning bins into which the values are grouped.  This can result in
considerable computational savings for methods that rely on repeatedly sorting the
features.  Value reduction is not explored in this study.  Three of the six input features are
integers, and so do not represent a value-rich set.  The remaining three are ratios of the
first three input features and so take on relatively few distinct real values.

Where feature reduction eliminated features from all training cases, case reduction
eliminates individual cases from the training set.  One may think of the training data as
being organized in a spreadsheet.  Then features are the columns and the cases, organized
in rows, are collections of features.  Feature reduction thus eliminates columns, while
case reduction eliminates rows.  Random case subsampling is the most common case
reduction methods.  In this approach a specified percentage (10%, 60%, etc.) of the cases
are chosen randomly and removed before training begins.  This approach is most often
used on large data sets to create the training and test sets needed for critical evaluation.

Random case subsampling does not make sense in the present research as groups of cases
are related to one another.  Case subsampling will be applied to all data mining methods
by selecting specific m values and removing the n*k cases associated with each m index.
This can be repeated many times, retraining the data mining methods after each
extraction.  If prediction accuracy is monitored as the number of cases is reduced, it may
be possible to determine whether a smaller number of benchmarks could have been
performed while maintaining satisfactory performance in the switching functions.  This
approach is referred to as incremental case analysis.  Rather than performing an
exhaustive incremental analysis, only selected increments will be tested.  In this study
three subsets of Training Set 1 are used.  The first is created by eliminating every third
sample.  The second is created by eliminating every other sample.  The final subset is
created by keeping every third sample.  Table 5 gives the exact dimensions for these
cases.

Data Mining Methods

Data mining methods may be grouped into three categories: math, logic, and distance
methods.  In this study the math method employed is linear discriminant analysis (LDA)
– results from training with neural networks are being developed and may be presented at
the conference.  LDA is the discrete version of the classic linear statistical regression,
while neural networks represent a non-linear approach to classification.  Tree reduction
will be applied to the features for the LDA.  Incremental case subsampling as described
above will be applied to this method as well (in fact, case subsampling will be applied to
all methods).

Decision tree solutions from the logic methods will be computed on the training data as
well.  Feature reduction is automatic with this method.  Solutions of varying complexity
may be obtained from a single decision tree by pruning subtrees that have a predictive
value below a certain significance threshold.  Several such prunings will be performed for
each decision tree for comparison.  Significance levels of s=1.6 and 2.0 will be studied.
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The distance solution investigated in this study is k-Nearest Neighbors, or k-NN.  This
method makes a prediction by selecting among the k cases in the training set, for which
the correct solution is known, that are closest to the current problem.  Closeness must be
defined by an appropriate distance metric – the metric employed in this research is the
Euclidean distance (or its n-dimensional analogue).  Solutions with k equal to 1, 5, and 11
will be evaluated.

The performance of the methods is expressed in terms of a classification error rate.  This
rate is computed by dividing the number of misclassifications by the total number of
switching function evaluations.  In each of the tables the error rate is expressed as a
percentage.

Results

Before we get started its interesting to know how the PLAPACK switching functions
behave on the Inside and Outside Test sets for comparison to the data mining methods.
Table 14 shows error rates for the PLAPACK switching functions.  Performance is
measured against benchmarks on 2x2, 3x3, and 4x4 processor configurations.  Note in all
cases that the error rate is high, especially when compared to the error rates of less than
1% obtained by Brewer (Brewer 1995).

Decision Tree

Three decision trees were induced from the training set: the default tree, and trees pruned
at significance levels of 1.6 and 2.  These particular values were selected based on earlier
research indicating these significant levels often yield effective solutions.  Table 15
shows the performance of these decision trees.  Decision tree solutions are expressed as
binary trees where each node is either a condition or a decision.  Tree methods
recursively partition the feature space by features and feature values.  Features closer to
the root of the tree are the most significant predictors of outcome.  The root node of the
default tree tests whether feature 5, the ratio m/k, is greater than .523.  If so, the
processing continues in the left subtree.  If not, processing continues in the right subtree.
Subtrees terminate with leaf nodes when enough is known about a particular problem to
predict which algorithm is the best.  The default decision tree has 303 nodes; the decision
tree pruned for significance levels of 1.6 and 2.0 have 99 and 51 nodes, respectively.
The reduction in nodes creates an accompanying reduction in complexity of the switching
functions.

Pruning may also improve predictive performance by removing subtrees that are too
specific – a condition known as over-training.  Over-training occurs when data mining
methods are provided with enough information that they produce specialized solutions
that are highly accurate on the training data, but produce diminished accuracy on new
cases.  The results in Table 15 demonstrate that pruning can be helpful.  The tree pruned
to a significance of 2.0 provides the most accurate results on the Inside Test.  Studying
the error rates in this table indicates that there may be a decreasing error trend beyond the
cases reported in the table.  This is not the case – further analysis at significance levels of
2.5 and 4 shows the error increasing once again for all processor configurations so 2.0 is
a good choice.
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Note that this table also contains columns for performance on 3x3 and 4x4 CPU
configurations.  These measurements show that performance deteriorates when switching
functions trained from benchmark data generated on one processor configuration (2x2 in
this case) is used to make predictions of performance on other configurations.  Note that
not only does the misclassification rate increase on 3x3 processors, but that this rate
continues to increase as we progress to 4x4 processors.  Recall that the PLAPACK
switching functions are not sensitive to the number of processors used or their topology.
This result provides some indication that this approach is not sufficient if switching
functions of a fixed accuracy on all processor configurations are desired.

Table 16 provides results for decision trees trained by subsampling the original training
set, Training Set 1.  Case subsampling can improve computational performance by
reducing the number of cases that need to be considered in inducing a solution.  This is
especially important for large data sets – our data sets are not considered large by data
mining standards, but the data are expensive to generate and so minimizing the size of the
training set is important.  Case subsampling may also improve predictive performance by
preventing over-training.  Table 16 shows the most accurate predictions are derived from
a switching function trained on the second subsampled data set and pruned to a
significance of 1.6.

k-Nearest Neighbors

Three distance solutions were created using the k-NN method for values of k equal to 1,
5, and 11.  These values were selected based on earlier research indicating that these were
reasonable values.  As with decision trees, k-NN based switching functions were created
from Training Set 1 as well as from case subsampled versions of this data set.  Feature
reduction by tree selection was also applied to the training data.  As discussed above,
where case subsampling removes rows of a spreadsheet, feature reduction removes
columns.  Which features to remove is determined in this case by first determining which
features the tree method includes in its solutions.  If a feature appears anywhere in a
decision tree it is left in the training spreadsheet.  For this study three trees were
examined: the default tree, the tree pruned at a significance of 1.6, and the tree pruned at
a significance of 2.0.  The default tree contains all features, the s=1.6 tree does not
include matrix dimension m, and the s=2.0 tree does not include dimensions m or k.  The
ratios of dimensions appear in each case.  This indicates that the ratios are more
statistically significant than the dimensions, and provides some justification for the
PLAPACK decision to only include ratios in its switching.  However, this decision is not
completely justified, as the error rates for the PLAPACK switching functions are several
times higher than the k-NN predictions.

Table 17 to Table 19 show the performance of the nearest neighbor methods.  As with the
decision tree method, the performance of 2x2 processor trained switching functions on
benchmark data from different configurations is also shown, with similar results.  For 2x2
switching functions measured on 2x2 data, feature reduction always increases the error
rate.  This observation reinforces the idea that it is not sufficient to eliminate the matrix
dimensions from the switching function formulation.  The best performance on both data
sets is obtained by the 5-NN switching function with no feature reduction.
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Table 20 shows the results for the nearest neighbor method with case subsampling.  In all
tests case subsampling increases the prediction error rates.

Linear Discriminant Analysis

Linear Discriminant Analysis, or LDA, was the final data mining method evaluated for
its switching potential.  Table 21 shows the performance of this method on the standard
data sets, for both the 2x2 and other processor configurations.  Performance with and
without feature reduction is shown.  Feature reduction is accomplished using tree
selection of relevant features, as was done for the nearest neighbor method discussed
above.  As in the other cases the prediction accuracy continues to degrade the further the
processor configuration for which predictions are made differs from the training
configuration (2x2 in this case).  The performance of the method without feature
reduction is significantly better than with feature reduction.

Table 22 shows results on the 2x2 test sets with case subsampling.  This table reveals that
case subsampling has little effect on prediction accuracy for these test sets.

Conclusions

This preliminary investigation examined the application of data mining methods to
benchmark data for creating switching functions for parallel matrix multiplication.
Despite the preliminary nature of this study, much useful information has been obtained.
First, the accuracy of the data mining methods is significantly better than the default
PLAPACK switching functions in this study.  This provides adequate motivation for
commencing the complete research program.  The switching functions produced by the
data mining methods achieve 90-95% accuracy.  This is lower than the 99% accuracy
reported by Brewer (Brewer 1995).  Brewer achieved this accuracy using linear
regression models of performance created from benchmark a database of tens of
thousands of measurements.  It is important to note that this study achieved 95%
prediction accuracy (using a decision tree) from a database of just over one thousand
measurements (343 benchmarks times four algorithms per benchmark).  In production
environments where it may not be possible to set aside days of dedicated computation for
calibrating numerical software switching functions this reduction in the benchmarking
requirement is significant.  Furthermore, it is likely that the application of additional
standard techniques from data mining may further improve this prediction rate, possibly
even while reducing the benchmarking requirement further.

Of the methods reported in this paper decision trees and nearest neighbor methods appear
to have the most potential.  Both of these methods produce switching functions that are
easily represented in programs as a set of nested IF or case statements, and so are rapidly
evaluated.  Both methods also have negligible training times.  This may be important for
numerical software to retrain itself during production deployment as new performance
data is gathered as a result of user utilization.

Two pre-processing methods were evaluated – feature reduction and case subsampling.
Case subsampling was effective for decision trees.  This is less important for the slight
improvement in accuracy than because it demonstrates that accuracy can be maintained
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while significantly reducing the quantity of training benchmark samples that are required
(nearly 50%).  Table 23 summarizes the costs of obtaining the training and test data for
all cases.  The degree to which this applies when the switching functions are generalized
to support a broader range of problem sizes remains to be seen.  Neither case
subsampling or feature reduction was effective on the nearest neighbor methods.  Post-
processing the decision trees by pruning also proved effective.  The benchmarked
significance levels were supplemented by additional tests that show that significance
levels of 1.6 and 2.0 appear to have the most potential.

Table 24 contains the prediction penalty analysis for PLAPACK, LDA, 5-NN, and the
decision tree pruned to a significance of s=2.0.  The prediction penalty is computed by
finding the difference in performance associated with using the predicted algorithm over
the correct algorithm for that problem.  Thus the prediction penalty is the cost of making
a prediction error.  The performance penalty is expressed by computing the difference
between the correct and predicted algorithms.  This difference is then divided by the
performance of the correct algorithm and expressed as a percentage.  The analysis in
Table 24 is done for the Inside Test Set, and shows that both the 5-NN and decision tree
methods have penalties that are three times less than those of PLAPACK, on average.
Table 25 repeats the analysis for the decision tree pruned at s=1.6 to illustrate that,
although training costs can be reduced while maintaining prediction error the average
cost of those errors may (and in fact will probably) increase.

As a final note recall that, in order to reduce variability in the benchmark data, the
average of three runs was used in creating the training sets.  The three runs were made
immediately following one another.  However, for cases where a benchmark had to be
repeated substantially later (a day or more), differences in average performance for the
same problem were observed to be as high as 9%.  This suggests that future efforts
should average results gathered over a broader time frame to ensure the results are more
representative of what a user will actually encounter.
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Figure & Captions

Figure 1 Continuous switching function formulation.

Figure 2 Discrete switching function formulation.
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Tables

Table 1 Algorithm variants for the PLAPACK adaptive matrix multiplication
algorithm.

VARIANT M N K
1 Large Large Large
2 Large Small Large

3 Small Large Large
4 Small Small Large

Table 2  IBM SP hardware configuration for the data mining study.

MACHINE IBM SP
(OSPREY)

Processors 256 P2SC CPUs
(232 compute)

135 MHz
Memory* 512 MB (80)

1 GB (96)
2 GB (56)

   Table 3 IBM SP software configuration for the data mining study.

SOFTWARE VERSION

Operating System AIX 4.3.2.x

ESSL 3.1.0.1
Parallel ESSL 2.1.0.0

PBS CM 1.1.x
POE 2.3.0.10
Compilers

C 3.6.6.0
FORTRAN 6.1.0.0

                                                
* Memory is reported in Size (Num) groups, where Size is the amount of memory and
Num is the number of processors with that amount of memory.
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Table 4 Values of <m,n,k> for the three size classes in the data mining study.

DATA SET <M,N,K>
Training Set 1 50,75,100,150,200,250,300,350,400,450,

500,550,600
Inside Test 60,83,130,174,232,319,373,418,530

Outside Test 40,45,650,700,750

Table 5 Values of <m,n,k> for the three training subsets.

DATA SET <M,N,K> REDUCTION (%)
Original
Training Set 1

50,75,100,150,200,250,
300, 350,400,450,500,550,600

0

Subset 1 50,75,150,200,300,350,
450,500,600

30.7

Subset 2 50,100,200,300,400,500,600 46.1
Subset 3 50,150,300,450,600 61.5

Table 6 Class prevalence for Training Set 1 on 2x2 processors.

CLASS CASES PREVALENCE

1 1418 .645
2 322 .147

3 457 .208
4 0 0.0

Table 7 Class prevalence for the Inside Test Set (Test Set 1) on 2x2 processors.

CLASS CASES PREVALENCE

1 492 .675
2 96 .132

3 141 .193
4 0 0.0
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Table 8 Class prevalence for the Outside Test Set (Test Set 2) on 2x2 processors.

CLASS CASES PREVALENCE

1 76 .608

2 20 .160
3 29 .232
4 0 0.0

Table 9 Class prevalence for the Inside Test Set (Test Set 1) on 4x4 processors.

CLASS CASES PREVALENCE

1 473 .649
2 116 .159

3 140 .192
4 0 0.0

Table 10 Class prevalence for the Outside Test Set (Test Set 2) on 4x4 processors.

CLASS CASES PREVALENCE

1 72 .576
2 25 .20

3 28 .224
4 0 0.0

Table 11 Class prevalence for the Inside Test Set (Test Set 1) on 3x3 processors.

CLASS CASES PREVALENCE

1 458 .628
2 113 .155
3 158 .217

4 0 0.0
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Table 12 Class prevalence for the Outside Test Set (Test Set 2) on 3x3 processors.

CLASS CASES PREVALENCE

1 70 .560

2 26 .208
3 29 .232
4 0 0.0

Table 13 Class prevalence for subsampling of Test Set 1 on 2x2 processors.

SUBSAMPLE 1 SUBSAMPLE 2 SUBSAMPLE 3
CLASS CASES PREV. CASES PREV. CASES PREV.

1 958 .63 748 .632 524 .620

2 213 .14 162 .137 112 .133
3 350 .23 273 .231 209 .247
4 0 0.0 0 0.0 0 0.0

Table 14 PLAPACK switching function error rates (%) for Test Set 1 and 2.

TEST SET
CPUS IN OUT

2x2 27.3 12.0
3x3 32.0 18.4

4x4 29.9 16.8

Table 15 Decision tree error rates (%) for 2x2 processor switching functions.

2X2 CPU 3X3 CPU 4X4 CPU
SIG. IN OUT IN OUT IN OUT

1.0 7.3 2.4 9.6 10.4 13.4 9.6

1.6 6.2 2.4 8.4 10.4 12.5 9.6
2.0 5.9 2.4 8.0 10.4 12.5 9.6
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Table 16 Decision tree error rates (%) for 2x2 processor switching functions with
case subsampling on Training Set 1.

FULL SUB 1 SUB 2 SUB 3
SIG. IN OUT IN OUT IN OUT IN OUT

1.0 7.3 2.4 7.5 2.4 6.9 2.4 9.5 2.4
1.6 6.2 2.4 6.2 2.4 5.6 2.4 7.3 2.4

2.0 5.9 2.4 6.9 2.4 6.3 2.4 7.3 2.4

Table 17 1-NN error rates (%) for 2x2 processor switching functions.

2X2 CPU 3X3 CPU 4X4 CPU
FEATURE

REDUCTION IN OUT IN OUT IN OUT

None 7.8 2.4 10.2 10.4 11.5 9.6
1.6 6.7 3.2 10.0 9.6 12.2 8.8
2.0 8.0 3.2 10.4 9.6 14.8 8.8

Table 18 5-NN error rates (%) for 2x2 processor switching functions.

2X2 CPU 3X3 CPU 4X4 CPU
FEATURE

REDUCTION IN OUT IN OUT IN OUT

None 5.3 2.4 8.8 10.4 12.1 9.8

1.6 11.4 8.8 14.8 10.4 15.6 8.0
2.0 7.0 2.4 7.8 10.4 12.6 9.6

Table 19 11-NN error rates (%) for 2x2 processor switching functions.

2X2 CPU 3X3 CPU 4X4 CPU
FEATURE

REDUCTION IN OUT IN OUT IN OUT

None 8.5 2.4 9.3 10.4 15.6 9.6
1.6 20.0 2.88 24.4 24.0 21.1 26.4
2.0 8.0 2.4 8.2 10.4 12.2 9.6
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Table 20 k-NN error rates (%) for 4x4 processor switching functions with no feature
reduction and case subsampling on Training Set 1.

K=1 K=5 K=11
TRAINING

SET IN OUT IN OUT IN OUT

Full 7.8 2.4 5.3 2.4 8.5 2.4

Sub 1 8.1 2.4 8.9 2.4 8.4 2.4
Sub 2 9.2 2.4 9.7 2.4 11.6 2.4

Sub 3 9.6 2.4 10.0 2.4 10.2 2.4

Table 21 LDA error rates (%) for 2x2 processor switching functions.

2X2 CPU 3X3 CPU 4X4 CPU
FEATURE

REDUCTION IN OUT IN OUT IN OUT

None 12.1 21.6 15.4 26.4 18.0 27.2
1.6 21.7 34.4 25.1 34.4 24.7 40.0

2.0 26.6 32.8 30.5 34.4 28.9 34.4

Table 22 LDA error rates (%) for 2x2 processor switching functions with no feature
reduction and case subsampling on Training Set 1.

TEST SET
TRAINING IN OUT

Full 12.1 21.6
Sub 1 11.9 21.6
Sub 2 12.8 21.6

Sub 3 12.1 21.6
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Table 23 Benchmarking Cost Summary, 2x2 processors.

BENCHMARK
NUMBER OF

BENCHMARKS* CPU MINUTES**
Training Set 1 2197 1560
     Sub 1 1521 1081***
     Sub 2 1183 841***

     Sub 3 845 600***
Test Set 1 729 344

Test Set 2 500 224
* Recall that each benchmark is four measurements.
** A CPU-minute is the wallclock time in minutes multiplied by the number of
processors used.
*** These times are estimated by multiplying the percent reduction by the time for the
original training set.

Table 24 Prediction penalty analysis for the data mining methods trained with the
complete Training Set 1 measured on the Inside Test Set.

MEASURE PLAPACK LDA 5-NN TREE, S=2.0
Error rate 27.3% 12.10% 5.35% 5.9%
Av. Penalty 17.20% 10.12% 6.93% 5.59%

Stdev(penalty) .096 .083 .065 .048
Max(penalty) 41.42% 36.23% 26.09% 24.07%

Min(penalty) 0.02% 0.01% 0.02% 0.08%

Table 25 Prediction penalty analysis for the decision tree methods trained with the
training set Sub 2 measured on the Inside Test Set.

MEASURE PLAPACK TREE, S=1.6
Error rate 27.3% 5.6%
Av. Penalty 17.20% 8.9%
Stdev(penalty) .096 .083

Max(penalty) 41.42% 34.13%
Min(penalty) 0.02% 0.08%


